Search results for "Modelos matemáticos"
showing 10 items of 35 documents
Resonances, chiral symmetry, coupled channel unitarity and effective Lagrangians
1999
By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. We report on an update of these results examining their possible relevance for meson spectroscopy.
Geometric inequivalence of metric and Palatini formulations of General Relativity
2020
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K≡R R , can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the …
Improved unitarized Heavy Baryon Chiral Perturbation Theory for π N scattering
2000
We show how the unitarized description of pion nucleon scattering within Heavy Baryon Chiral Perturbation Theory can be considerably improved, by a suitable reordering of the expansion over the nucleon mass. Within this framework, the $\Delta$ resonance and its associated pole can be recovered from the chiral parameters obtained from low-energy determinations. In addition, we can obtain a good description of the six $S$ and $P$ wave phase shifts in terms of chiral parameters with a natural size and compatible with the Resonance Saturation Hypothesis.
Multicenter solutions in Eddington-inspired Born-Infeld gravity
2020
We find multicenter (Majumdar-Papapetrou type) solutions of Eddington-inspired Born-Infeld gravity coupled to electromagnetic fields governed by a Born-Infeld-like Lagrangian. We construct the general solution for an arbitrary number of centers in equilibrium and then discuss the properties of their one-particle configurations, including the existence of bounces and the regularity (geodesic completeness) of these spacetimes. Our method can be used to construct multicenter solutions in other theories of gravity.
Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure…
2020
We examine the polarized doubly-virtual Compton scattering (VVCS) off the nucleon using chiral perturbation theory ($\chi$PT). The polarized VVCS contains a wealth of information on the spin structure of the nucleon which is relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of the polarized VVCS amplitudes $S_1(\nu, Q^2)$ and $S_2(\nu, Q^2)$, and the corresponding polarized spin structure functions $g_1(x, Q^2)$ and $g_2(x,Q^2)$. Our results for the moments of polarized structure functions, partially related to different spin polarizabilities, are compared to other th…
Automatic or manual arterial path for the ankle-brachial differences pulse wave velocity
2018
Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206434 An automated method for measuring arterial path length with devices that determine pulse wave velocity (PWV) in peripheral arteries is frequently applied. We aimed to compare arterial path length measurements based on mathematical height-based formulas with those measured manually and to assess whether the ankle-brachial difference (abD-PWV) measured with the VOPITB device is comparable to that obtained by manual measurements. In 245 patients, a metric measuring tape was used to determine the arterial path length from the suprast…
Determination of the pole position of the lightest hybrid meson candidate
2019
Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, pi1(1400) and pi1(1600), which couple separately to eta pi and eta' pi. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the eta(') pi system by the COMPASS collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S-matrix. We provide a robust extracti…
Double Polarization Observables in Pentaquark Photoproduction
2019
We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near threshold. We present a first estimate of the sensitivity of this observable to the pentaquark photocouplings and hadronic branching ratios, and extend our predictions to the case of initial state helicity correlation ALL, using a polarized target. These results serve as a benchmark for the SBS experiment at Jefferson Lab, which proposes to measure for the first time the helicity correlations ALL and KLL in J/psi exclusive photoproduction, in o…
Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: The subtraction function and moments of unpolarized structur…
2020
The forward doubly-virtual Compton scattering (VVCS) off the nucleon contains a wealth of information on nucleon structure, relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of low-energy VVCS in chiral perturbation theory ($\chi$PT). Here we focus on the unpolarized VVCS amplitudes $T_1(\nu, Q^2)$ and $T_2(\nu, Q^2)$, and the corresponding structure functions $F_1(x, Q^2)$ and $F_2(x,Q^2)$. Our results are confronted, where possible, with "data-driven" dispersive evaluations of low-energy structure quantities, such as nucleon polarizabilities. We find significant dis…
Recent progress on the chiral unitary approach to meson meson and meson baryon interactions
1999
We report on recent progress on the chiral unitary approach, analogous to the effective range expansion in Quantum Mechanics, which is shown to have a much larger convergence radius than ordinary chiral perturbation theory, allowing one to reproduce data for meson meson interaction up to 1.2 GeV. Applications to physical processes so far unsuited for a standard chiral perturbative approach are presented. Results for the extension of these ideas to the meson baryon sector are discussed, together with applications to kaons in a nuclear medium and $K^-$ atoms.